
LQCD Workflow Execution Framework: Models,
Provenance and Fault-Tolerance

Luciano Piccoli†‡, Abhishek Dubey*, James N. Simone† and James B.
Kowalkowlski†
†Fermi National Accelerator Laboratory, Batavia, IL, USA 60510
*Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA 37235
‡Illinois Institute of Technology Chicago, IL, USA 60616

Abstract. Large computing clusters used for scientific processing suffer from systemic failures when
operated over long continuous periods for executing workflows. Diagnosing job problems and faults
leading to eventual failures in this complex environment is difficult, specifically when the success of whole
workflow might be affected by a single job failure. In this paper, we introduce a model-based, hierarchical,
reliable execution framework that encompass workflow specification, data provenance, execution tracking
and online monitoring of each workflow task, also referred to as participants. The sequence of participants
is described in an abstract parameterized view, which is translated into a concrete data dependency based
sequence of participants with defined arguments. As participants belonging to a workflow are mapped onto
machines and executed, periodic and on-demand monitoring of vital health parameters on allocated nodes
is enabled according to pre-specified rules. These rules specify conditions that must be true pre-execution,
during execution and post-execution. Monitoring information for each participant is propagated upwards
through the reflex and healing architecture, which consist of hierarchical network of decentralized fault
management entities, called reflex engines. They are instantiated as state machines or timed automatons that
change state and initiate reflexive mitigation action(s) upon occurrence of certain faults. We describe how
this cluster reliability framework is combined with the workflow execution framework using formal rules
and actions specified within a structure of first order predicate logic that enables a dynamic management
design that reduces manual administrative workload, and increases cluster-productivity.

1. Introduction
Unprecedented amounts of data are currently produced and analyzed by e-science experiments. The
organization of this massive information is critical for its effective use in new discoveries. Lattice
Quantum Chromodynamics (LQCD), the numerical study of QCD quantum field theory on a four-
dimensional discrete lattice, generates considerable data that are typically processed at several facilities.
Applications, software libraries, input data and workflow recipes are shared among collaborators
worldwide.

Unlike many e-science experiments, which use Grid resources for harvesting capacity processing
power, LQCD computations employ tightly-coupled parallel processing which requires computers with
high-speed low-latency networks. Binary codes are fine tuned to exploit capabilities of each underlying
architecture. LQCD workflows effectively exploit the capacity of one or more parallel computers by
running many independent computations at once.

LQCD workflows are categorized into two typical types: configuration generation and analysis
campaign (see figure 1). The former is used for creating an ensemble through a sequence of Monte
Carlo simulations. An ensemble is an ordered collection of gluon configurations sharing the same physics



parameters (e.g. lattice spacing and masses). An analysis campaign iterates over an ensemble to compute
physics quantities such as decay rates and particle masses. The processing for each configuration is
independent of the other configurations. Many such analysis campaigns are conducted on each ensemble.

(a) (b)

Figure 1. Example of typical LQCD workflows: (a) configuration generation workflow, (b) two-point
analysis workflow

Fault tolerance and provenance are two of the critical requirements for LQCD workflows [1]. The
first is critical for improving productivity and utilization of the dedicated hardware, while the second
is necessary for recording and retrieving details about produced data, including the metadata and
information about its origin.

In this paper, we propose a model-based, hierarchical, reliable execution framework for executing
scientific workflows. During the workflow specification, each task (participant) has its execution
conditions (invariant sets) and associated actions identified. At execution time, the workflow system
interacts with the monitoring system in order to have conditions periodically verified and receive
notifications if conditions are violated. While executing, information regarding provenance of produced
products is recorded in a database that also contains information about the status of running workflow.

An overview of the proposed framework for LQCD workflows is described in section 2. Section 3
discusses the integration of the framework subsystems, followed by case studies using the current
prototype in section 4. Finally, section 5 summarizes the proposed framework and discusses future
work and extensions.

2. Framework overview
The proposed reliable workflow execution framework results from the integration of the workflow and
reliability subsystems. The workflow subsystem provides workflow specification and execution along
with the recording of data provenance, while the reliability subsystem performs execution tracking and
online monitoring of individual workflow tasks.

Workflow tasks are plugins to this framework that we call participants. Participants are in general
legacy applications wrapped by scripts that allow communication with the reliability and workflow
subsystems. The framework supports parameterized abstract workflows instancianted with specific
input parameters. The relationships among participants are described using types and parameters. The
dependencies in concrete workflow are translated based on the types and parameter values.

2.1. Workflow specification
LQCD workflows are specified by users in parameterized abstract templates, which defines abstract
workflows. The templates applied to input parameters yields concrete workflows. In the typical
configuration generation workflow (figure 1(a)) only a single participant is used. The same wrapped
binary code represented by a participant is invoked with different parameters within a simple loop,
defining a chain of configuration files. Figure 2(a) depicts an abstract configuration generation workflow,
where the node in the middle represents the main participant. The extra nodes are defined for handling
workflow inputs and outputs.



The notion of abstract workflow is better illustrated by two-point analysis campaigns (figure 2(b)).
The actual number of participant instances on the concrete executable workflows depend on user
specified parameters. The concrete workflow for a combination of three heavy quarks and six particle
masses input parameters is shown in figure 1(b). The number of sub-workflows on the left side of
figure 1(b) is equivalent to the number of configuration files within the ensemble used for the analysis.

The current prototype uses the Ruote BPM engine [2], but we plan to use the Pegasus workflow
management system [3] to specify the abstract workflows and perform the mapping to concrete
workflows. The latter are defined as Condor DAGMan workflows.

(a) (b)

Figure 2. Example of typical LQCD workflows: (a) abstract configuration generation workflow, (b)
abstract two-point analysis workflow

2.2. Data model and provenance
This section describes the data model defined for the framework. We use an object-oriented model for
describing the entities and their relationships. Groups of classes are implicitly divided into six spaces:
parameter, data provenance, secondary data, process history, monitoring, and mitigation spaces. The
spaces do not define a hard boundary between entities, but rather a logical and functional aggregation.
The first four spaces deal with workflow related data, while the last two are used for the system reliability.

Figure 3. Data model divided into six spaces

The parameter space contains all parameters used as input for workflows, including physics
parameters (e.g. quark masses), algorithmic parameters (e.g. convergence criteria) and execution
parameters (e.g. number of nodes used). Parameters are name-value pairs that can be grouped in
sets. Parameter sets are used to describe the physics properties of ensembles or hold analysis campaign
attributes.

The relationship between input and output files is kept within the data provenance space. Data
products are modeled as products, which have optional properties. For complex analysis campaign
workflows, products may have multiple parent-children relationships. Products also contain a reference
to the workflow participant instance and parameters used to generated it. This allows the product to be
reproduced by invoking the original participant with the original input parameters.



In addition to data files and their properties, LQCD workflows also produce domain specific
secondary data. Secondary data classes have meaning only within the LQCD context and would need to
be expanded in case the model is used in conjunction with other workflows.

The process history space holds information regarding workflows and participants. A participant
holds information about the binary code, including command line format, version and pre and post run
scripts for manipulating input and output parameters and command line formatting to invoke the actual
binary code. Additionally each participant may have a list of conditions that must be evaluated pre-
execution, during execution and post-execution.

In the monitoring space information regarding sensor configuration and historical values are kept.
Common values tracked by sensors are CPU usage, memory available and free disk space. Data in
the monitoring space is used in conjunction to failure recovery strategies and properties defined in the
mitigation space.

2.3. Execution tracking
During workflow execution participants that have data and control dependencies met are mapped onto
worker machines and executed. Periodic and on-demand monitoring of vital health parameters on
allocated nodes is enabled according to pre-specified rules. These rules define conditions that must
be true pre-execution, during execution and post-execution.

Participant conditions are used to define preconditions, postconditions and invariants. Pre and
postconditions are evaluated before and after a participant is started, while invariants are periodically
monitored during the participant life time.

Conditions refer to sensor values, which are periodically checked. Values are verified according to
the scope defined by the condition, insuring the monitored values fall within the expected range. We
define the following notation to describe conditions: H(x) op value, where H(x) defines the sensor
being monitored, op defines the comparison operation and value is the expected sensor condition.

Figure 4. Execution of a participant and its conditions.

An example of a precondition for participants that must retrieve data from dCache is the following:
H(pm)(t) > 0, where pm is the dCache pool manager, H(pm) is the sensor value at instant t. The
verification of participant output products can be performed by a postconditionH(file) = 1, where file
is the output file name. Finally, during the execution the computing node (cn) assigned to the participant
must be available: H(cn) = 1.

Monitored sensor values (H) for running participant are propagated upwards through the reflex and
healing architecture, which consist of hierarchical network of decentralized fault management entities -
the reflex engines [4].

Reflex engine are distributed across the cluster on all computation nodes. To aid in fault isolation and
quick recovery, they are divided into regions based on their racks (figure 5). Each region is managed by a
head node that is identified as the regional manager. This manager relays the sensor information for the
computing nodes under its supervision to the database. Local Managers run on all computation nodes
that are used in execution of participants. They are used to monitor and mitigate the behaviors internal
to that node.



Figure 5. Hierarchical organization of reflex engines within computing cluster

We follow the principles of autonomic computing [5] and try to incorporate the mitigation and monitor
state machines as close to the source as possible. In other words, most of them are located on the
concerned computation node. However, some commands such as IPMI reset and the heartbeat monitors
need to be outside concerned machine and are placed on the regional node. Monitoring information from
all nodes is channeled into a database for future forensic analysis, if required.

3. Integration
The integrated workflow, monitoring and mitigation system is shown in figure 6. The left side contains
the workflow execution while components on the right side are part of thew cluster reliability system.

The workflow execution engine provides an interface for submitting concrete workflows. Multiple
concrete workflows can be handled by multiple execution engine threads. As participants are declared
ready to run based on the dependencies, the workflow engine contacts the global manager. Events
are exchanged asynchronously between the global manager and the workflow engine. The centralized
controller processes the events (associated actions are specified in the configuration database) and then
sends required commands using events to the local managers and regional managers. Information
regarding the participant conditions along with a unique participant and workflow instance identifier
are used to start participant specific monitors in the worker nodes.

At participant start up, the preconditions are checked at the global manager level. Any violation on the
preconditions results into a message back to the workflow engine informing the violation. This message
back to workflow engine is a mitigation strategy and is specified in the mitigation reflex engine module
at the global controller level.

When participants are submitted for execution, all invariant conditions result in the activation of
participant specific monitors, if required. An example of invariant condition is the availability of the
dCache pool manager: H(pm)(t) > 0. When a condition is violated, an event is sent to the workflow
execution engine. Action to avoid fault propagation is then taken, for example, by restarting the same
participant on a different set of nodes.

Similarly when a participant completes, any postconditions are evaluated. Usually postconditions are
workflow related, for example to make sure expected output files have been created. Specific examples
of these conditions are discussed in the case study section.

4. Case study
In this case study we considered the example of a two-point analysis workflow. It is a coordinated
set of calculations aimed at determining a set of specific physics quantities. For example, predicting



Figure 6. Complete runtime framework with integrated workflow, monitoring and mitigation integration

the mass and decay constant of a specific particle determined by computing ensemble averaged two-
point functions. A typical campaign consists of taking an ensemble of vacuum gauge configurations
and using them to create intermediate data products (e.g. quark propagators) and computing meson n-
point functions for every configuration in the ensemble. An important feature of such a campaign is
that the intermediate calculations done for each configuration are independent of those done for other
configurations.

The sample workflow shown in figure 1(b) is the representation of an analysis campaign for a single
configuration file of an ensemble. The complete workflow consists of N independent instances of
the concrete workflow on left side of the figure. The N outputs form the campaign output are later
combined and analyzed. An implicit behavior of analysis campaign is that the number of participants
and outputs depend on the input parameters. For example, the number of participants generating heavy
quark propagators is derived from the number of quark masses and source types specified by the input
parameters.

For this case study, we only used a single computation node, even though the participants are MPI
jobs capable of running on multiple machines. Jobs for this study were submitted using a simulated PBS
queue that transferred the job to the concerned computation node and started it. The other node was used
to run reflex engines and the workflow execution engine. The communication between reflex engines and
workflow execution engine was achieved using UNIX pipes as they were running on the same machine.
A third node was used to simulate the dCache pool manager.

We used the following failure scenarios to test our prototype framework:

Failure of a dCache node: The first participant on the two-point concrete workflow is getFile. This
participant is responsible for fetching the gauge configuration used as input for the LQ (Light
Quark) and HQ (Heavy Quark) participants. A precondition of getFile is that the dCache pool
manager (pm) must be available, thereforeH(pm)(t) > 0 should be true.

Diskspace precondition: The second level of participants on the two-point concrete workflow is
composed by HQ and LQ instances. It is known that HQ produces a large output file whose size is in
the order of a few GB. A precondition is to check if the disk space available meets the requirements:
H(cn./project) < 10000.

Failure of a computation node: The allocated computation node must be online i.e. H(cn)(t) > 0,
where cn is the node allocated to a participant.



4.1. dCache failure mitigation scenario
We used the same setup as described in previous section. To inject failure, we deliberately sent a
shutdown command to the dCache node making it unavailable at the time of execution of getFile. In
the case of condition violation the workflow engine is informed about the unavailability of dCache and
an action must be taken.

Currently, our strategy is to reschedule the getFile participant after a ∆time. The reschedule time
is computed based on historical knowledge about recovery rate of pool manager. Other actions may be
available for the same failure and could be taken by the mitigation framework, if a reflex engine is present
on the pm node.

4.2. Disk failure mitigation scenario
We were able to simulate the effects of diskspace precondition violation in a similar manner. Before the
participant starts running, the local disk sensor is checked to make sure enough space is available. An
event is created and sent back to the workflow execution engine if the condition has been violated. The
mitigation action is provided by the local reflex engine, by deleting files from the temporary folder on
project partition.

4.3. Computation node failure
Heartbeat monitors are used as invariant conditions on all nodes that execute a participant. If a node
fails, the default action is to report the failure to workflow execution engine, which instructs other nodes
involved in the job to perform clean up and terminate the job. This saves us time in scenarios where
without any notification the other nodes running the job would have been blocked from executing any
other participant for the specified wall time. Figure 7 shows the series of timed events related to a node
failure detected by missing heatbeats.

Figure 7. Timing in seconds

4.4. Data provenance
Information about data produced by workflows is saved in the provenance space data model. It allows
users to quickly perform queries based on parameters such as participant type, input parameters and input
configurations used. It is possible to reconstruct provenance through graphs for the visualization of the
steps taken by the workflow.

The Ruby language, used in conjunction with Rails to implement the current prototype, can be used
to perform specific queries based on the provenance model. The key feature of Ruby on Rails [6] is the



implementation of the active record pattern [7]. Active record defines the connection between the classes
defined in the provenance model and database tables. Ruby on Rails offers transparent connections to a
variety of databases.

Results from the queries can be manipulated within the language or exposed to scientists through
web interfaces. The queries using interactivy Ruby shell shown in figure 8 provide answers for the
following questions: (1) Where is the configuration file l612f21b6600m0290m0484.6? (2) What where
the input parameters used to generate l612f21b6600m0290m0484.6? (3) Which configuration files where
generated using algorithm su3 rmd version 1.2? (4) What are the configuration files generated with
residuals smaller than 10E-5?

Figure 8. Sample provenance queries using Ruby and active record

The format of queries follow an object-oriented style since the provenance products are instances of
classes defined by the data model. A common approach to minimize direct iterations with the provenance
database is to define a set of common used queries. The Ruby on Rails environment can be used to
quickly make these default queries accessible through the web.

5. Conclusions and future work
In this paper we presented a workflow execution framework that tracks data provenance and reliably
runs scientific workflows. Essential run time information is constantly verified by the monitoring
framework, while conditions pertinent to the running workflow are monitored only during execution
time. Additionally, the conditions are specified at the participant granularity, avoiding overzealous
monitoring and consequent use of computing resources that would otherwise be available for the
scientific applications. The data provenance provided by the framework allows users to quickly find
and reconstruct products based on participants and input parameters. We have developed a prototype
of the proposed architecture and used it to demonstrate the feasibility of fault-tolerant enabled LQCD
workflows.

Many workflow systems currently lack fault tolerant features, which is one of the top priorities for
scientific workflows that run for a long time. Hardware and software faults are common and need to be
addressed at both workflow and node levels. This work fills the gap between monitoring and workflow
systems, allowing proactive behavior on the presence of failures.

We plan to add missing features to the prototype, such as completing the set of conditions, distinction
between reliability and workflow related conditions, replacement of the current workflow engine, and
greater functionality for accessing and using data provenance information. Further tests are planned
on a virtual cluster environment for further test the prototype framework. We are preparing a virtual
environment for testing the system prototype based on Suns Virtual Box running Ubuntu Linux. This
environment allows full control over the resources, including injection of failures and observation of



system recovery behavior and avoids the use of actual cluster resources and competition with production
runs.

References
[1] Piccoli L, Kowalkowski J B, Simone J N, Sun X H, Holmgren D J, Seenu N, Singh A G and Jin H 2008 SWBES ’08

(Indianapolis, IN, USA)
[2] Wohed P, Andersson B, ter Hofstede A H, Russell N and van der Aalst W M 2007 Patterns-based evaluation of open source

bpm systems: The cases of jbpm, openwfe, and enhydra shark Tech. rep.
[3] Deelman E, Singh G, Su M H, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman G B, Good J, Laity A, Jacob J C

and Katz D S 2005 Sci. Program. 13 219–237 ISSN 1058-9244
[4] Dubey A, Nordstrom S, Keskinpala T, Neema S, Bapty T and Karsai G 2007 Innovations in Systems and Software

Engineering 3(1) 33–52
[5] Sterritt R, Parashar M, Tianfield H and Unland R 2005 Advanced Engineering Informatics 19 181–187 URL http:

//dx.doi.org/10.1016/j.aei.2005.05.012
[6] Bachle M and Kirchberg P 2007 IEEE Software 24 105–108 ISSN 0740-7459
[7] Fowler M, Rice D, Foemmel M, Hieatt E, Mee R and Stafford R 2002 Patterns of Enterprise Application Architecture

(Addison-Wesley Professional)


